

Validation and interpretation of OMI tropospheric NO₂ observations during INTEX-B

Folkert Boersma, D. Jacob, R. Park, R. Hudman – Harvard University H. Eskes, P. Veefkind, R. van der A, P. Levelt, E. Brinksma – KNMI A. Perring, R. Cohen, T. Bertram, P. Wooldridge – University of California E. Bucsela, J. Gleason – NASA GSFC

Important goal INTEX-B: EOS-Aura Validation

- Integration of aircraft and satellite observations
- a.o. sub-satellite spirals for validation OMI trace gases

Criteria

Cloud fraction < 20%

Use all OMI pixels covered by spatial extent spiral

Use of KNMI analysed near-real time product (www.temis.nl)

Validation of OMI tropospheric NO₂: 4 March 2006

Validation of OMI tropospheric NO₂: 9 March 2006

All spiral flights during March 2006

All spirals

r = 0.89

n = 18

DC8-OMI: +0.31 10¹⁵ molec. cm⁻²

RMS: 1.18 10¹⁵ molec. cm⁻²

Mexico City outlier

Lowest DC8 pressure: 772 hPa

Average p_{surf} (OMI): 853 hPa

Standard procedure: extrapolate to OMI surface level.

On average extrapolated fraction: 13%

Outlier extrapolated fraction: 78%

Statistical analysis

Take differences of individual OMI pixels with matching DC8 columns 128 OMI pixels

Center Gaussian = +0.16 molec. cm⁻²

Width Gaussian = 0.59 molec. cm⁻²

Mexico City

GEOS-Chem model evaluation with DC8

- GEOS-Chem OK over Gulf of Mexico
- OMI biased low over Gulf of Mexico relative to both DC8 and GEOS-Chem
- GEOS-Chem biased high over US in INTEX-B domain:

Are EPA NEI99 emissions too high?

Validation: what do we see with INTEX-B?

- OMI tropospheric NO₂ generally consistent with DC8 (r=0.89, n=18)
 - Bias < 0.2 10¹⁵ molec. cm⁻²
 - Precision ~ 0.6 10¹⁵ molec. cm⁻² (~50% in range 0-4 10¹⁵ molec. cm⁻²)
- OMI biased low over ocean
- Uncertainties in DC8 column construction over strongly polluted areas
- Indications that NEI99 emissions overestimate March 2006 emissions

Use OMI and GEOS-Chem to evaluate EPA NEI99 emissions over the USA

Compare monthly mean OMI and GEOS-Chem NO₂

Improve EPA NEI99 emissions

SVD-type method

- Industry: -40% (1999-2006)

- Power Industry: -40% consistent with NOx SIP

- (N)Onroad Mobile: 0%

Compare top down and improved NEI99 emissions:

120

-90

-150

(N)Onroad Mobile NEI99 NO, emissions NO, emissions

Local increases in

mobile emissions

Mobile

End of presentation

Conclusions

- INTEX-B allows integration of aircraft, satellite and model data
- OMI NO₂ is generally consistent with DC8 NO₂
- OMI NO₂ has a small, negative bias over the ocean (~0.5 10¹⁵ molec. cm⁻²)
- Indications from DC8 and OMI that EPA NEI99 emissions are too high in the eastern US
- 40% decrease in Industry and Power Plant NO_x emissions removes model bias in eastern and south eastern US

Compare Top-down and a priori emissions

Use OMI columns and modelled emission respons to compute OMI top-down emissions – Focus on eastern US

Compare top-down and EPA NEI99 emissions

Verdeling emissies

